
Towards Scalable Gaussian Processes

Mohd Abbas Zaidi (150415), Aarsh Prakash Agarwal (150004)
Project Report

Prof. Ketan Rajawat
aarshp@iitk.ac.in, mzaidi@iitk.ac.in

Abstract

The project started with studying the first 10 lectures of Convex Optimization by1

Stephen Boyd, Stanford. It was followed by reading Gaussian Processes from2

lecture slides by Piyush Rai, and from the the books by Williams (1) and by Trevor3

Hastie (2). The task was aimed at comparing a new Parsimonious Online Gaussian4

Process technique with the existing algorithm. We focused primarily on Sparse5

Online Gaussian Process technique. We ran multiple experiments during the project6

to compare the two processes. In the next sections, we will explain the details of7

the POG and SOGP method and then the experiments run on them.8

1 The problem with ’Online’ Gaussian Processes9

It has long been known that a single-layer fully-connected neural network with an i.i.d. prior over10

its parameters is equivalent to a Gaussian process (GP), in the limit of infinite network width (3).11

However, neural networks are much more popular as compared to Gaussian Processes. The currently12

used algorithms for training neural nets are all based on back-propagation approaches. Under these13

techniques, at each instant, a point is fed to the network and the errors are back-propagated to update14

the weights. This allows for a very convenient property, called ’Online’ training. For example for a15

spam detection system, When a user marks one mail as spam, the new data fetched from this user can16

be easily used to tune the existing model.17

However, Gaussian Processes have a strong mathematical base and have so far relied on exact updates,18

which are one-shot, i.e. they go through the whole of the existing data set at each instant. This makes19

Gaussian Processes less suitable for Online settings.20

2 Parsimonious Online Gaussian Processes21

The POG method tries to induce sparsity based on uniqueness or information derived from each point.22

It tries to reduce the complexity while maintaining the posterior consistency. The full updates in a23

time series format can be written as24

µµµt+1|St
= kkkSt

(xxxt+1)[KKKt + σ2III]
−1
yyyt25

ΣΣΣt+1|St
= κ(xxxt+1,xxxt+1) − κ(xxxt+1,xxxt+1)kkkSt(xxxt+1)[KKKt + σ2III]

−1
kkkSt + σ226

It is clear that for normal updates the size of dataset increases by 1 at each time instant, and the27

posterior updates at time t + 1 use all past observations from the kernel dictionary. The inverse28

operation means a complexity of atleast O(N3)29

Under the POG method, the whole idea is to keep a subset which is representative of the whole dataset.30

There is obviously a trade-off between the errors in learning the unknown function and the size of31

this subset. POG uses Hellinger metric to throw away the least relevant point from the dictionary(also32

called the basis vector set). Hellinger distance is a metric to find the difference or deviation of two33

Submitted to Career Proposal Committee, Department of Electrical Engineering, IIT Kanpur.



multivariate continuous distributions from one another. It reduces to an easily computable form in the34

case of multivariate Gaussian distribution. When a new point comes in, the posterior is computed35

by adding it to the current dictionary. The DHMP algorithm, then performs the compression of the36

posterior.37

Under DHMP compression, each point of the dictionary(existing + new point) is removed one by38

one. The effect of removal is found using Hellinger distance. The least unique point is the one whose39

removal has the least effect on the posterior or whose Hellinger metric comes out to be the least. This40

point is removed from the dictionary if its Hellinger metric is below a certain threshold called the41

compression threshold εt. This process is repeated sequentially until the minimum Hellinger metric42

exceeds the threshold.43

The stopping criterion of the DHMP algorithm can be suitably varied to ensure that the distribution44

properties of the updates remain consistent. The removal threshold will finally dictate the number of45

points we have in our basis vector set or dictionary.46

3 Sparse Online Gaussian Processes(4)47

As the name suggests, the algorithm aims to reduce the time complexity of Gaussian Process in an48

online setting by approximating it with a sparse function. It derives its major Gaussian updates from49

(5) which approximates the posterior using KL divergence metric. The function likelihood and kernel50

are respectively given by:51

< fx >t=

t∑
i=1

Ko(x, xi)αt(i) = αααT
t kxkxkx

52

Kt(x, x
′) = Ko(x, x′) + kxkxkx

TCtCtCtkx′kx′kx′

The final updates are given by:

αt+1αt+1αt+1 = Tt+1Tt+1Tt+1(αtαtαt) + q(t+1)st+1st+1st+1

Ct+1Ct+1Ct+1 = Ut+1Ut+1Ut+1(Ct+1Ct+1Ct+1) + r(t+1)st+1st+1st+1st+1st+1st+1
T

st+1st+1st+1 = Tt+1Tt+1Tt+1(CtCtCtkt+1kt+1kt+1) + et+1et+1et+1

The terms Tt+1Tt+1Tt+1 and Ut+1Ut+1Ut+1 represent the increase in the dimension of vector and matrix by adding a53

zero element(for vector), and row column(for matrix). These updates are called full updates as they54

result in increasing the size of the Gaussian defining co-variance matrix. Performing these updates55

over a certain point essentially translates to major contribution from that point, and that point is56

considered part of dictionary called basis vectors. The major takeaway from these steps is that unlike57

standard Gaussian updates (which were used in POG), these updates at no point require inversion58

of the co-variance matrix, which makes these steps cheaper in time complexity than full updates of59

POG regression and, they can be performed in an additive fashion.60

The kernels can be approximated using sparse representation. The error between the actual kernel
and approximated sparse kernel is calculated and minimized and the sparse vector is found to be
a function of existing Gram kernel matrix at any given time. With the known sparse vector cheap
update is performed instead of full update as follows:

êt̂et̂et = KtKtKt
−1kt+1kt+1kt+1

st+1st+1st+1 = CtCtCtkt+1kt+1kt+1 + êt̂et̂et

As we can see, update does not involve the expansion of basis vector, or the covariance matrix and is61

therefore computationally cheap. The error calculation involving the calculation ofKtKtKt
−1 can also be62

made computationally cheap by clever book-keeping. This is because of fact that the sparse vectors63

are orthogonal and Gaussian updates are additive.64

In order to decide whether the current point is to be included in the basis vector set, we calculate65

the error in the likelihood function (whose absolute value turns out to be the minimum error we66

calculated earlier multiplied by a constant) and if the error is above a threshold, we include that point67

in the basis vector set, otherwise the cheap updates are performed for that point.68

2



The algorithm also has a provision of removing a point from the basis vector. This is performed when69

maximum size limit of basis vector is reached. It basically involves the addition of a point in the basis70

vector followed by the error score calculation (error in the likelihood function) for each point in the71

basis vector. Finally, the point with the minimum error contribution is deleted and basis vector is72

re-arranged.73

4 Experimental Setting74

For comparing the algorithms we are learning the sinc function. We have 160 training data points75

which are sampled from sinc function with added white Gaussian noise (with variance = 1). For76

testing we have 20 data points sampled from sinc function.77

5 Analysis: Comparing the two methods78

Before running the experiments, one needs to be sure to equalize any variable which may later79

confound the findings to one side. Other than keeping the data-set size, data-set values, noise, Kernel80

type and Model order same for both methods, the following points were observed during the course81

of analysis.82

5.1 Bias towards picking outliers83

Initially, as from the Figure 1 and Figure 2, we can see that SOGP outperformed the POG, even84

though model order of POG(51) was significantly greater than that of SOGP(17). We tried to figure85

out the reasons why SOGP had a better performance over POG. We realised that while removing86

points from dictionary POG will keep the points with higher Hellinger metric and remove the one87

with lower value. This would mean that any outlier point which arises due to random noise is less88

likely to be removed since they will change the learnt Gaussian significantly.89

Figure 1: First Comparison of SOGP and POG

However, any sparseness inducing method based on uniqueness of points will suffer from this bias.90

Why is the effect on SOGP lesser than that on POG? We will discuss that in the next point.91

5.2 SOGP: Additivity and Soft Removal92

Another advantage for SOGP seemed to be the fact that they did not throw away points completely.93

Rather, they had cheap updates which they used to update their weight vectors even if they did not94

include the points in the dictionary.95

Taking into consideration the last point, we discussed that the POG method is more biased towards96

outliers. If a new point comes in which does not cause any change in the distribution, it should ideally97

increase our confidence in the existing distribution. However, in the case of removal of the point, it98

is same as if we never saw the point. We end up removing those points from the dataset which are99

affected less by noise addition. In the case of SOGP, these points are not completely thrown away100

since they still contribute.101

3



Figure 2: SOGP seemed to outperforme POG at first

These cheap updates could not be replicated in the case of POG since the learning in POG was one102

shot after having learnt the dictionary elements, and depends solely on basis vector set.103

5.3 Without the Cheap Updates104

We next tried to compare the POG with SOGP after having removed the cheap update conditions105

from SOGP. As evident from Figure 3 and Figure 4 SOGP still seemed to perform better. Quite106

unexpected results were obtained when we saw that SOGP outperforms even the full model learnt by107

POG. We tried to debug each step of both the algorithms to find out which steps were missing from108

POG. We next discuss our findings after the debugging process.109

Figure 3: POG and SOGP comparison after removing cheap updates

5.4 Epochs in an Online Setting110

As mentioned earlier, in order to keep the solution tractable the SOGP algorithm tries to fit the111

posterior by an approximate projected Gaussian. Due to this reason, they can reduce the subsequent112

update step into seemingly additive steps, where the array or vector sizes are incremented when a new113

element comes in. Due to this reason, it is clear that the SOGP method enjoys the liberty of having a114

pre-trained model to start with over which they can perform their subsequent updates. SOGP gave115

superior performance due to multiple data sweeps. This however should not be allowed in an Online116

setting for two reasons. Firstly, you encounter each point only once. Secondly, we do not have access117

to all the data points after the first run, there is no concept of having an epoch in an online setting118

since the data points continuously flow in.119

Therefore, a faithful comparison of the two methods should run both of them for a single data sweep.120

4



Figure 4: SOGP performed better even after removing cheap updates

5.5 Hyper-Parameter Optimization121

After deciding the control parameters, both the algorithms were run side by side for randomly chosen122

hyper-parameters. As expected the POG algorithm gave much better results (Figure 5). Note that123

in this comparison, only the epoch was set to 1 and cheap update step was restored in SOGP. The124

metric for comparison was chosen as the test error at same Model Order.125

Figure 5: POG and SOGP comparison for one epoch

However, after running the algorithm, SOGP optimized the kernel parameters (hyper parameters) by126

maximizing the likelihood of the basis vector set via Stochastic Gradient descent algorithm. This127

tremendously improved their performance and they outperformed POG at lower Model Orders. We128

tried to run POG on the optimized kernel parameters obtained from SOGP. The performance of POG129

improved from the initial POG, but it did not beat the SOGP at lower Model Orders.130

However, at higher model orders(dictionary/basis vector size) POG did much better as compared to131

SOGP.132

The next logical step would be to write a separate optimizer for POG discussed in the next point.133

Details of the experiment are summarized in table below:134

HO - Hyper-parameter Optimization(of Kernel parameters)135

Experiments Test-Error SOGP Test Error POG
No HO in both SOGP and POG 0.8424 0.6216

HO only in SOGP 0.2250 0.6216
HO in both SOGP and POG(Lower Model Order) 0.2250 0.39
HO in both SOGP and POG(Higher Model Order) 0.2231 0.1559

136

5



Figure 6: POG and SOGP comparison on optimized parameters

5.5.1 Optimizing the Kernel Parameters137

The kernel optimization techniques try to maximize the confidence(likelihood) of the basis vector138

set or the dictionary elements which is selected. For this, we need to have the expressions for139

log-likelihood of the data-set and its derivatives with respect to the parameters for POG. As of now,140

hyper parameter optimization seems to worsen the performance of POG instead of improving it. We141

plan to work in this direction in future.142

5.6 When and Why does POG outperform SOGP?143

We observed that SOGP outperforms POG at lower model. However, the rate of decay of error with144

Model Order is faster in the case of POG. Hence, POG outpeforms SOGP at sligthly higher Model145

Orders. Possible explanations for this can be:146

5.6.1 Full vs Cheap Updates for SOGP147

Since SOGP also learns from the points not included in the dictionary, therefore choosing the right148

dictionary elements(even though they maybe less) helps to learn the distribution satisfactorily as a149

large number of points(which are not included) also contribute towards the finally learnt parameters.150

As the number of points in dictionary increases the number of full updates increases. However, this151

is countered by a reduction in number of cheap updates. As a net result the performance may not152

drastically improve. Therefore, a small number of points if chosen correctly perform exceptionally153

well and we don’t see much improvement upon increasing the number of points.154

5.6.2 Proved improvement in case of POG155

Theorem 1 in POG paper formulates the tradeoff between the compression budget εt and the accuracy.156

It is therefore proven that as εt reduces the performance in case of POG will definitely improve.157

6



6 Future Work158

6.1 Optimizing the Hyper-parameters for POG using other methods159

We would want to use other methods to optimize the Kernel parameters using the other possible160

methods. POG may outperform SOGP even at lower model orders if hyperparameters are optimised161

correctly.162

6.2 Comparing POG with other papers in the field163

After SOGP we will try to compare the POG algorithms with other papers in the field. We hope to164

get better results over there since the POG method has proven posterior convergence(theoretically).165

6.3 Hyperparamter Optimization with each new Dictionary Element166

We may sync the process of addition of elements to dictionary and updation of hyperparameter. This167

will maximise the likelihood at each step and may improve the performance even further.168

7



Acknowledgments169

We are thankful to Prof. Ketan Rajawat and PhD student Amrit Singh Bedi for the opportunities170

given and the constant help provided throughout the semester.171

References172

[1] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (Adaptive173

Computation and Machine Learning). The MIT Press, 2005.174

[2] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning: With175

Applications in R. Springer Publishing Company, Incorporated, 2014.176

[3] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-Dickstein, “Deep neural177

networks as gaussian processes,” arXiv preprint arXiv:1711.00165, 2017.178

[4] L. Csató and M. Opper, “Sparse on-line gaussian processes,” Neural computation, vol. 14, no. 3,179

pp. 641–668, 2002.180

[5] C. K. Williams, “Prediction with gaussian processes: From linear regression to linear prediction181

and beyond,” in Learning in graphical models, pp. 599–621, Springer, 1998.182

8


	The problem with 'Online' Gaussian Processes
	Parsimonious Online Gaussian Processes
	Sparse Online Gaussian Processescsato2002sparse
	Experimental Setting
	Analysis: Comparing the two methods
	Bias towards picking outliers
	SOGP: Additivity and Soft Removal
	Without the Cheap Updates
	Epochs in an Online Setting
	Hyper-Parameter Optimization
	Optimizing the Kernel Parameters

	When and Why does POG outperform SOGP?
	Full vs Cheap Updates for SOGP
	Proved improvement in case of POG


	Future Work
	Optimizing the Hyper-parameters for POG using other methods
	Comparing POG with other papers in the field
	Hyperparamter Optimization with each new Dictionary Element


